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Abstract
The 5G Core (5GC) adopts a service-based architecture that enables

flexible deployment of network functions (NFs) across the control

and user planes. Despite its advantages, building a 3GPP-compliant,

high-performance 5GC remains a significant challenge. In this pa-

per, we present L
2
5GC+, a 3GPP-compliant 5GC platform designed

for low-latency 5GC operations. L
2
5GC+ advances our previous

prototype, L25GC, by replacing the kernel-based Service-Based

Interface (SBI) with X-IO, a shared-memory-based SBI that main-

tains HTTP-style semantics while significantly reducing inter-NF

communication latency. The platform integrates Golang-based NFs

from free5GC, supports seamless upgrades to 3GPP Release 17, and

introduces several key features: (1) enhanced QoS enforcement in

the UPF with fairness guarantees, (2) rate limiting for hotspot con-

trol plane NFs (e.g., AMF) to prevent thrashing, (3) network slicing

to enable multi-tenant isolation and amortize polling overhead.

We evaluate L
2
5GC+ on the NSF FABRIC testbed in a geographi-

cally distributed deployment, integrating the RAN, core, and data

network across multiple sites. L
2
5GC+ is being made available

as an open Core-as-a-Service to support the broader 5G research

community.

CCS Concepts
• Networks→ Mobile networks; • Computer systems organi-
zation→ Cellular architectures.
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1 Introduction
The 5G core (5GC) network represents a fundamental shift in mobile

core architecture, moving beyond the legacy monolithic 4G Evolved

Packet Core (EPC) towards a microservice-based architecture [14,

17]. The 5GC decouples the network functions (NFs) in the mobile

core control plane into individual microservices that communicate

over a 3GPP-recommended Service-Based Interface (SBI) [1]. This

enables flexible scaling and chaining of individual NFs to facilitate

cloud-native deployment to lower the operational cost of the 5GC.

Such a decoupled design results in frequent message exchanges

between control plane NFs, given the complexity of 3GPP-defined

control plane protocols: a PDU session establishment event takes

up to 16 messages between control plane NFs to complete; com-

pleting a paging event involves up to 10 messages between control

plane NFs [7]. In addition, the existing 3GPP-recommended SBI

typically chooses kernel-based HTTP/REST APIs as the underly-

ing implementation, which introduces significant overhead when

control plane messages are exchanged between NFs [14]. Further-

more, the move to smaller cells is an important consideration as

well. For example, 5G seeks to utilize millimeter wave (mmWave)

radio links for higher bandwidth and ultra-low latency, with the

goal of also supporting massive device densities. MmWave-oriented

base stations have smaller coverage area, leading to more frequent

handovers when users switch between smaller cells. This in turn

introduces more control plane messages exchanges, magnifying

the latency penalties for the control plane with the decoupled 5GC.

Although a lot of existing work focuses on reducing latency

in 5GC user plane (i.e., UPF) [12, 20, 27, 34, 36], reducing control

plane latency is equally critical. The control plane is responsible for

user session setup, mobility management, etc. , which are necessary

operations before the user data can begin to flow. Thus, a slow

control plane also impacts user place performance in 5GC [14].

To enable low-latency control plane operations in 5GC, we devel-

oped L
2
5GC+ in [19], a system designed around a shared-memory-

based SBI built on top of OpenNetVM [39]. This design facilitates

low-latency communication between the decoupled control plane

NFs. In addition, L
2
5GC+ directly adopts Golang-based NFs from

free5GC [4], allowing us to inherit its latest advances, such as

3GPP Release 17 compatibility and New Radio Dual Connectivity
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(NR-DC [35]) support. While OpenNetVM offers high-performance

shared memory communication, it is fundamentally incompatible

with the synchronous, HTTP/REST-based semantics required by

the 3GPP SBI. This mismatch, compounded by language differences

between DPDK-based OpenNetVM (C) and free5GC (Golang), pre-

vents direct integration. To address this, we developed X-IO [30],

a compatibility I/O layer that emulates SBI semantics over shared

memory and bridges the language gap via Golang’s CGO interface.

Enabled by X-IO, L
2
5GC+ has been seamlessly upgraded to 3GPP

Release 17 using the free5GC codebase for NFs with only minimal

dependency adjustments.

In this work, we further enhance L
2
5GC+’s control plane per-

formance by introducing a rate limiter for control plane NFs. Our

analysis in §2.2.1 reveals that bursts of control plane load, often

triggered by a large number of concurrent user sessions, can easily

overwhelm certain “hotspot” NFs, such as AMF, thereby increasing

the completion time of control plane events. Existing 5GC NF im-

plementations typically employ a thread-based concurrency model

to handle events from multiple concurrent user sessions, where

each user session spawns a separate thread (or goroutine, in the

case of Golang). While this model enables parallelism, it also incurs

frequent context switches and increased scheduling latency under

high load, which exacerbates control plane latency. The dynamic

rate limiter in L
2
5GC+ adaptively adjusts the concurrency limit in

the control plane based on runtime performance indicators within

the NF, preventing the control plane overload.

In addition to the aforementioned optimizations, our latest up-

date to L
2
5GC+ introduces several key features: fairness-enhanced

QoS support in the user plane and network slicing. These capabili-

ties are increasingly important in cellular networks for serving a

diverse mix of applications, such as video streaming, cloud gaming,

and autonomous driving, each of which has distinct requirements

for QoS guarantees and resource isolation.

The QoS mechanism in L
2
5GC+’s UPF adheres to the Two Rate

Three Color Marker (trTCM) model recommended by 3GPP [9], en-

suring prioritization of designated user flows. Our implementation

further extends beyond standard 3GPP support by incorporating

a token bucket to ensure the fairness across flows, addressing the

known limitation of the traditional leaky bucket approach. This

enhancement ensures not only strict compliance with flow-level

QoS guarantees in 3GPP but also fair bandwidth allocation between

QoS and non-QoS flows, particularly under congestion.

L
2
5GC+ supports network slicing to enable the creation of iso-

lated virtual 5GCs (called slices), which allows operators to offer

differentiated services to distinct user groups. Moreover, slicing

in L
2
5GC+ can be extend to be end-to-end, including both the

RAN as well as the backhaul, enabling advanced use cases such as

QoS-assured VPNs. This enhancement also creates the opportunity

to improve resource utilization of L
2
5GC+. Resources (e.g., CPU)

can be multiplexed across slices to amortize the polling overhead

of DPDK-based packet processing in the underlying OpenNetVM

framework.

Beyond system design and implementation, we validate the capa-

bilities of L
2
5GC+ in a geographically distributed setup on the US

NSF Fabric testbed [11]. Our deployment spans L
2
5GC+ core net-

work, simulated UE/RAN and data networks (DN) across multiple

locations, providing a more realistic evaluation environment. We

will make the L
2
5GC+ publicly deployable as a “Core-as-a-Service”

on the NSF Fabric testbed to facilitate open 5G research. L
2
5GC+ is

publicly available at https://github.com/nycu-ucr/L25GC-plus.

2 Background and Challenges

5G Core Control Plane

SMFAMF

AUSFNRF UDMPCF

UDRNSSF

SBI 
interface

N2 N4

RAN UPF Data 
networkN3

UEs

Figure 1: Architecture of 5GC.

2.1 Architecture of 5G Core (5GC) Network
Fig. 1 depicts the architecture of the 5G Core (5GC) network with

the separate control plane and user plane. The control plane is

responsible for managing user sessions, such as the registration,

authentication, mobility handling (e.g., handover), billing, etc. The
user plane consists of one or more User Plane Function (UPF) in-

stances that handle user data forwarding between the radio access

network (RAN) and the data network (DN). In addition, the UPF

is the key NF responsible for enforcing QoS policies and traffic

shaping. These UPF instances may also be distributed, while log-

ically sharing a centralized control plane, which enables flexible

deployment of 5GC.

The 5GC control plane follows the service-based architecture as

specified by 3GPP, where each NF operates as an independently

running microservice. We list the key control plane NFs in Fig. 1, in-

cluding Access and Mobility Management Function (AMF), Session

Management Function (SMF), Network Slice Selection Function

(NSSF), Authentication Server Function (AUSF), Network Repos-

itory Function (NRF), Policy Control Function (PCF) and Unified

Data Management (UDM). Among these, the AMF serves as the

entry point for UEs to access the 5GC (through by RAN). The AMF

acts as a frontend to orchestrate UE registration and mobility proce-

dures (e.g., handover) by coordinating with other control plane NFs.

The SMF serves as the bridge between the control plane and user

plane. It configures user sessions on the UPF based on instructions

received from the rest of the control plane. Communication between

control plane NFs is standardized through the 3GPP SBI, which

typically uses HTTP/REST APIs over a kernel-based networking

stack that however could introduce substantial overhead. Every

inter-NF message passing involves copying, context switches, pro-

tocol processing, serialization and deserialization. These overheads

compound over time and become significant due to the complexity

of 5GC control plane procedures. As shown in Fig. 2, representative

procedures such as PDU (Protocol Data Unit) session establishment,

handover, and paging (idle-to-active transition) involve substantial

inter-NF communication. Each procedure requires the exchange of

dozens of messages, with each message incurring the full overhead

https://github.com/nycu-ucr/L25GC-plus
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of kernel-based networking. This repeated cost becomes a critical

bottleneck in the latency-sensitive 5GC.

1. RRC Setup Request

(a) PDU Session Establishment

2. RRC Setup
3. RRC Setup Complete
4. Registration Request

5. Identity Request
6. Identity Response
7. UE Auth Request

8. UE Auth Response
9. Auth Request

10. Auth Response
11. Security Mode Command
12. Security Mode Complete

13. Equipment Identity Check Req.
14. Equipment Identity Check Resp.

15. UECM Registration
16. SDM Get

17. Policy Control Create Req.
18. Policy Control Create Resp.
19. PDU Session Create Req.
20. PFCP Session Create Req.
21. PFCP Session Create Resp.
22. PDU Session Create Resp.
23. Initial Context Setup Req.

24. Registration Accept
25. RRC Reconfig.

26. RRC Reconfig. Complete
27. Initial Context Setup Resp.
28. PDU Session Update Req.
29. PFCP Session Update Req.
30. PFCP Session Update Resp.
31. PDU Session Update Resp.
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2. Handover Request

3. PDU Session Update Req.
4. N4 Sesion Modification Req.
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Figure 2: Procedures of representative 5GC control plane events: (a)
PDU session establishment; (b) N2 Handover; (c) Paging. Red arrows
depict communication within 5GC.

2.2 Challenges
We introduced X-IO [30] in L

2
5GC+ to replace the kernel-based

SBI, which significantly reduces the latency overhead associated

with inter-NF communication (details in §3.1). However, several

important challenges remain unaddressed in L
2
5GC+, including the

need to manage NF concurrency under load to prevent thrashing

(§2.2.1), lack of fairness in QoS handling across user flows (§2.2.2),

and lack of network slicing support (§2.2.3).

2.2.1 Thrashing of hotspot control plane NFs. AMF and SMF are

typically the “hotspot” (most frequently involved) NFs in the 5GC,

heavily involved in frequent control plane procedures, such as PDU

session establishment, handover, and paging, as shown in Fig. 2.

In most 5GC implementations, each user session is served by a

dedicated thread. This also applies to Golang-based 5GC platforms

(e.g., free5GC, SD-core, Magma Core), where threads are abstracted

as goroutines. Golang is often chosen for developing 5GCNFs due to

its concise programming syntax and built-in concurrency support

via lightweight goroutines. Upon receiving a control plane message

associated with a new user session, the NF immediately spawns a

new goroutine to process the message, enabling concurrent event

processing for multiple user sessions.

While this per-session threading model simplifies concurrency, it

introduces scalability bottlenecks and may lead to thrashing under

heavy traffic (observed in the past for general kernel network proto-

col processing [22]), a condition where excessive context switching

overwhelms CPU resources. The purely load-driven creation of

goroutines for each request leads to a rapid buildup of concurrent

execution contexts, and thus to frequent context switching between

threads under high load.

To evaluate the impact of excessive concurrent processing of

events on the overall event completion time, we conducted offline

profiling.We vary the maximum number of events (i.e., concurrency
limits) in the AMF: 2, 4, 8, 12, 16, 20, and also an unlimited number, as

shown in Fig. 3. Details of the experiment setup are provided in §4.1.

Our results from the PDU session establishment procedure confirm

that beyond a point, the increase in the concurrency also increases

the completion time for this control plane event. As the number

of active goroutines grows, overhead from scheduling and context

switching goes up non-linearly, resulting in an excessive completion

time for the control plane operation. The lowest event completion

time for the establishment of the PDU session is achieved when the

limit is set between 8 and 16. Setting the limit too low also results

in a longer event completion time. This is due to insufficient use of

concurrency, which in turn leads to increased queueing delay.
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Figure 3: Completion time of PDU session establishment under dif-
ferent concurrency limits.

2.2.2 “Leaky-bucket” QoS support in 3GPP-based UPF. Effective
QoS support in UPF is essential to ensure differentiated treatment

across user data flows. The 3GPP-recommended design, as out-

lined in TS 23.501 [9], employs the Two Rate Three Color Marker

(trTCM [13]) to classify traffic into green, yellow, and red based

on compliance with Guaranteed Bit Rate (GBR) and Maximum Bit

Rate (MBR). While this mechanism provides a basis for prioritiz-

ing traffic, 3GPP lacks clear guidance on how to manage fairness

across concurrent flows, particularly in scenarios where aggregated

bandwidth of flows exceeds available capacity.

In fact, it is common for non-QoS flows and QoS flows oper-

ate above their committed rate, i.e., sharing a portion of excess

bandwidth. Without explicit fairness enforcement, the non-QoS

flows may experience undesirable starvation, even if it originates

from legitimate users with ongoing tasks to be completed in rea-

sonable time. Thus, enforcing fair allocation is important to ensure

the proper use of that excess bandwidth across all flows (Qos or

non-QoS). This is addressed by our fairness-enhanced QoS support

using additional token bucket shaper (§3.4).

2.2.3 Lack of 5GC network slicing support. Network slicing enables
the coexistence of multiple virtual 5GC networks (each called a net-

work slice) on a shared physical infrastructure. Each network slice

is defined by a unique ID, called a Single Network Slice Selection As-

sistance Information (S-NSSAI). Each network slice is customized to
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serve different application classes, e.g., enhanced mobile broadband

(eMBB), for high-throughput applications such as video streaming;

ultra-reliable low-latency communications (URLLC), for latency-

sensitive scenarios industrial automation; and massive machine-

type communications (mMTC) for large-scale IoT deployments with

low per-device data rates.

Despite its improvements in reducing inter-NF communication

latency, L
2
5GC+ lacked the support for network slicing. This limits

its ability to support multiple virtual core networks to enable multi-

tenant services (e.g., MVNO) and enforce quality guarantees across

distinct use cases.

In addition, each L
2
5GC+ NF instance uses a dedicated CPU core

for busy polling (e.g., using OpenNetVM’s base design in §3.2) to

enable shared-memory-based inter-NF communication. This design

avoids interrupt overhead and enables low-latency communication.

However, it simplistically provisions for peak loads, leading to

wasted overhead with busy polling under light load. Naively scaling

the number of used CPU cores (each operating at 100% regardless

of the load) linearly with the number of NF instances leads to poor

resource utilization. The lack of network slicing support in L
2
5GC+

further exacerbates this issue. Without slicing support, it is not

feasible to share NF instances across multiple slices, making it

necessary to allocate separate polling cores for each slice-specific

NF. This rigid one-core-per-NF model (even when a slice uses a tiny

amount of resources) leads to inefficient resource usage of L
2
5GC+.

Adding network slicing support will enable more flexible resource

sharing in L
2
5GC+, as we discuss in §3.5.

3 Design
We begin with an architecture overview of L

2
5GC+, introducing its

core components (§3.1). Next, we analyze the fundamental incom-

patibility between the 3GPP SBI and OpenNetVM’s shared mem-

ory interface, and how X-IO addresses it (§3.2). We then discuss

the dynamic rate limiter deployed in the AMF in L
2
5GC+ to pre-

vent thrashing (§3.3). We then discuss our fairness-enhanced QoS

support in L
2
5GC+’s UPF (§3.4). We discuss support for network

slicing and how to amortize the polling overhead caused by DPDK

(§3.5). We finally discuss the roadmap and ongoing development of

L
2
5GC+, including the NR-DC support in (§3.6).

Worker node (userspace)

OpenNetVM

AMF
3GPP SBI

thx

X-IO layer

…

Shared Memory

…
UPF-CNSSF

3GPP SBI

thx

X-IO layer

… SMF
3GPP SBI

thx

X-IO layer

…

N4 I/F
PFCP

N4 I/F
PFCP

UPF-U

Data Packet 
Processing 

Pipeline

PDR rules

Figure 4: Overview of L25GC+. This figure shows the consolidated
deployment of L25GC+ NFs on a single node, including both control
and user planes. L25GC+ remains a 3GPP-compliant design through
careful layering of different stacks.

3.1 Overview of L25GC+
Fig. 4 shows the overall architecture of L

2
5GC+, which uses Open-

NetVM [39] for some key functionality. OpenNetVM is a high-

performance kernel-bypass NFV platform based on DPDK. It sup-

ports zero-copy NF chaining using shared memory processing,

making it a suitable foundation for L
2
5GC+. We leverage Open-

NetVM to support both low-latency control plane operations and

user plane packet processing. By bypassing the kernel, shared mem-

ory processing eliminates expensive overheads associated with data

copies, protocol processing, context switches, serialization, and de-

serialization, which are resource-intensive operations commonly

seen in the kernel-based 3GPP SBI.

We show the deployment of L
2
5GC+ NFs in Fig. 4, where control

plane NFs and user plane NFs are co-located on the same worker

node to maximize the benefits of shared memory processing. In

each worker node’s userspace, L
2
5GC+ allocates a shared mem-

ory pool accessible to all co-located NFs. Messages are exchanged

through lightweight descriptors delivered between NFs, while the

actual message payload remains in-place within the shared mem-

ory. To enable seamless 3GPP SBI interactions between control

plane NFs, L
2
5GC+ integrates X-IO within each NF. X-IO acts as

a bridge between the HTTP-based SBI and OpenNetVM’s shared

memory APIs, enabling smooth interaction with the Golang-based

NF implementation from free5GC.

Furthermore, the N4 interface between the control plane and

user plane is also realized over shared memory in this consoli-

dated deployment. As shown in Fig. 4, the SMF communicates PDR

rules and session contexts to the UPF over the N4 interface using

PFCP (Packet Forwarding Control Protocol), as specified by 3GPP.

In L
2
5GC+, we replace the kernel-based UDP socket with shared

memory processing to enable PFCP over shared memory.

Disaggregated user plane: As shown in Fig. 4, L
2
5GC+ further

disaggregates the user plane (i.e.,UPF) into two complementary NFs:

UPF-C and UPF-U. The UPF-C handles control plane operations,

acting as the N4 interface endpoint that communicates with the

SMF to receive and update PDR rules and user session contexts.

This disaggregation allows for rapid updates to PDRs and session

state without impacting the user plane performance. Meanwhile,

it maintains flexibility after offloading the UPF-U to a SmartNIC,

where we can fully customize the interface between UPF-C and

UPF-U for optimal performance without being constrained by 3GPP

implementation recommendations.

With this deployment, the UPF-C and UPF-U still share the PDRs

and user session state, residing in OpenNetVM’s shared memory.

This eliminates extra state updates between UPF-C and UPF-U

during events such as paging or N2 handover. As a result, the N4

communication overhead is minimized and UPF-U can access PDRs

at minimal cost.

3.2 X-IO Layer
Shared memory communication in OpenNetVM: Following
OpenNetVM’s zero-copy packet processing design, each control

plane NF in L
2
5GC+ has a pair of producer/consumer rings for

receiving (RX) and transmitting (TX) descriptors, as shown in Fig. 5.

Each NF includes a dedicated packet handler implemented in C us-

ing the NFLib in OpenNetVM, which provides low-level primitives
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for interacting with producer/consumer rings. Descriptor routing

between NFs is coordinated by OpenNetVM’s NF manager, which

is also responsible for creation of the shared memory pool.

When an NF sends a message to another NF, it writes a descriptor

containing the target NF ID and a pointer to the message payload

residing in shared memory. This descriptor is put into the source

NF’s TX ring. The NF manager polls the TX ring, retrieves the

descriptor, and puts it into the RX ring of the target NF. The target

NF then polls its RX ring and addresses the message using the

pointer in the descriptor. This design ensures each ring has only a

single producer and a single consumer, offering lock-free descriptor

exchange between NFs.

Incompatibility between sharedmemory processing and 3GPP
SBI: Despite its performance advantages, OpenNetVM’s shared

memory API is incompatible with the 3GPP SBI, which relies on

synchronous HTTP/REST-based request-response semantics. Open-

NetVM provides an asynchronous, non-blocking messaging inter-

face built on lock-free ring buffers and polling-based communica-

tion, optimized for high-throughput NFV workloads. In contrast,

the 3GPP SBI requires different semantics, such as such as blocking

calls. It also requires timeout handling, concurrent connections,

and structured response codes. These essential abstractions are

absent in OpenNetVM’s shared memory API, creating a semantic

mismatch that prevents direct support for 3GPP-compliant NFs.

This incompatibility is further compounded by a language-level

mismatch: OpenNetVM is implemented in C and tightly coupled

with DPDK [3], while the NFs from free5GC integrated into L
2
5GC+

are written in Golang. Bridging both the semantic and language-

level gaps is critical for enabling seamless integration of 3GPP-

compliant NFs with a shared memory communication interface.
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thread

X-IO API Libs

X-IO stack ONVM 
packet 
handler

OpenNetVM 
NF manager

RouterUser session 
table R
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Figure 5: The X-IO [30] layer in L25GC+. X-IO offers an unified inter-
face to mitigate the incompatibility between synchronous, Golang-
based 3GPP SBI and asynchronous C-based shared memory commu-
nication API from OpenNetVM [39].

X-IO to unify shared memory processing with 3GPP SBI. To
address these incompatibilities, we designed X-IO [30], a compati-

bility I/O layer that bridges OpenNetVM’s shared memory I/O with

the 3GPP SBI. As shown in Fig. 5, we wrap OpenNetVM’s packet

handler into the X-IO stack (in C), which introduces several neces-

sary abstractions (condition variable for blocking calls, user session

table for concurrent connections etc. ) to emulate HTTP-style se-

mantics over a high-performance shared memory substrate. On

top of the X-IO stack, we provide the X-IO API library (in Golang),

which exposes a socket interface to directly interact with the un-

derlying X-IO stack for shared memory communication. A full set

of HTTP/REST APIs, which preserve the same semantics as the

kernel-based one, are provided on top of the socket interface. The

user-space NF code can operate with the 3GPP SBI directly on top

of these APIs. X-IO leverages Golang’s Foreign Function Interface

(FFI), or CGO, to allow Golang-based 3GPP SBI to directly access

low-level shared memory primitives in C, including raw pointers

and ring buffers. This integration ensures that L
2
5GC+ retains full

3GPP compliance while benefiting from the performance advan-

tages of shared-memory-based communication [19].

3.3 Dynamic Rate Limiter for Control Plane NFs
After observing that an unbounded number of goroutines leads to

a sharp decline in control plane performance (Fig. 3 in §2.2.1), one

intuitive mitigation is to cap the total number of goroutines, i.e.,
prevent spawning new goroutines once a certain limit is reached.

However, a static, offline-profiled rate limiter may be insufficient in

practice due the complexity of the 5GC deployment. Factors such

as NF scaling, placement, and slice-specific resource allocations and

adjustments introduce runtime variability and inter-NF interfer-

ence, making fixed limits suboptimal. Instead, such limit should be

dynamically adjusted at runtime based on real-time performance

metrics to accurately reflect the NF’s current state.

We introduce a dynamic rate limiter in the L
2
5GC+ control plane

to cap the number of in-progress events, thereby bounding the total

number of goroutines across control plane NFs to prevent thrashing.

We deploy the rate limiter primarily at the AMF as it is the entry

point for all control plane events (via the N2 interface). Thus, it is

more susceptible to overload than other downstream NFs. When

the AMF reaches its concurrency limit, it defers processing of new

incoming messages until in-progress events complete. This mecha-

nism implicitly limits the rate at which downstream NFs (e.g., SMF,

AUSF) receive and process events, thereby protecting the rest of the

control plane from overload. The concern of insufficient utilization

of downstream NFs can be addressed by carefully multiplexing

underutilized NFs across different slices (§3.5).
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Figure 6: Rate limiter in L25GC+’s AMF.

Fig. 6 depicts the design of the rate limiter in L
2
5GC+’s AMF.

Key components include a receive queue for buffering incoming

messages, a dispatcher for distributing messages to idle goroutines

or spawning new goroutines as needed, a counter for tracking con-

current events in progress and a monitor for recording goroutines

scheduling latency. We describe the details of these components

next.
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Receive queue: When the AMF receives a message that initiates a

new control plane event, the message is first placed into a receive

queue. For example, in a PDU session establishment procedure trig-

gered by the UE, the event begins with a PDU Session Establishment
Request message. When this message arrives at the AMF via the N2

interface, it is enqueued and waits to be scheduled for execution by

the dispatcher.

Dispatcher: Within the AMF, we implement a lightweight gorou-

tine called the dispatcher. When the number of in-progress events

(𝐸current) is below the configured limit, i.e., maximum number of

concurrent events (𝐸max), it retrieves arrival messages from the re-

ceive queue and distributes messages to goroutines for processing.

When 𝐸current reaches the 𝐸max limit, the AMF enters the blocking

state, waiting for some in-progress events to finish.

Concurrent event counter: To track the number of in-progress

events (𝐸current), we introduce a counter in the AMF. As shown in

Fig. 6, this counter is incremented when a message initiating an

event begins processing and decremented when the corresponding

completion message is processed. For example, in the PDU session

establishment procedure (Fig. 2 (a)), the counter is incremented

upon receiving the PDU Session Establishment Request and decre-

mented upon processing the PDU Session Resource Setup Response.
Scheduling latency monitor:We monitor the scheduling latency

that goroutine spends waiting in the scheduler, i.e., time spent in a

runnable state before actually running. This is a reliable indicator

of scheduler contention and goroutine queuing delays. Increased

scheduling latency indicates potential thrashing, suggesting a reduc-

tion of the number of goroutines, thus determining the maximum

number of concurrent events (𝐸max) in the concurrent event counter.

The monitor collects this metric every 500 ms, via ‘/sched/laten-
cies:seconds’ exposed by Golang’s built-in runtime/metrics module.

To reduce sensitivity to transient fluctuations on measured sched-

uling latency, we apply an exponential weighted moving average

(EWMA) to the monitored latency to smooth out short-term varia-

tions (Line#1-2 in Algorithm-1). We set the EWMA coefficient to

0.7 as it yielded better results in our testing.

Algorithm 1 Adjustment on 𝐸max based on scheduler latency

1: every 500 ms:

2: EWMAt = 0.3 × EWMAt-1 + 0.7 × sched_latency
t
⊲ Update

EWMA of scheduling latency measured at interval 𝑡

3: if Ecurrent < Emax then
4: continue ⊲ Skip adjustment when the number of

in-progress events is lower than the configured limit

5: end if
6: if EWMAt > sched_latency_thresh then
7: 𝐸max = 𝐸max − 1 ⊲ Reduce one goroutine

8: else if EWMAt ≤ sched_latency_thresh then
9: 𝐸max = 𝐸max + 1 ⊲ Increase one goroutine

10: end if

As shown in Fig. 6, the monitor dynamically adjusts the maxi-

mum number of concurrent events (𝐸max), based on the monitored

scheduling latency. If the monitored scheduling latency is greater

than the pre-configured threshold (sched_latency_thresh1), we
decrement 𝐸max by one (Line#6-7 in Algorithm-1). Otherwise, we

increment 𝐸max by one (Line#8-9 in Algorithm-1). To ensure that

these adjustments are meaningful, the rate limiter only consid-

ers increasing or decreasing the 𝐸max when the number of cur-

rently in-progress events reaches the configured limit (Line#3-5 in

Algorithm-1).

3.4 QoS Support in UPF with Fair Allocation of
Additional Bandwidth

Based on 3GPP specification R17 [2] and the need for fairness

in managing available bandwidth (beyond the guaranteed rate)

between QoS flows and non-QoS flows (discussed in §2.2.2), the QoS

support in our UPF is implemented as a combination of trTCM [13]

and a token-bucket-based QoS shaper. The trTCM classifies QoS

flows into red, yellow, and green based on traffic characteristics.

The token bucket controls token consumption rate to shape/smooth

traffic.
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Figure 7: Fairness-enhanced QoS Support in L25GC+’s UPF: trTCM +
Token Bucket.

Fig. 7 shows the QoS workflow in the UPF: (1) PDR classifica-
tion: Upon packet arrival, the UPF classifies the traffic as QoS or

non-QoS based on the PDRs; (2) Traffic metering: Packets belong-
ing to the QoS flows are passed to the trTCM, which marks them

with color labels based on the metered flow rate relative to two

thresholds: the Guaranteed Bit Rate (GBR) and the Maximum Bit

Rate (MBR). Packets metered with a rate below GBR (fully compli-

ant) is marked as green. Yellow is used for marking packets with a

rate between GBR and MBR (partially compliant), and red for pack-

ets exceeding the MBR (non-compliant). (3) Policing: Red packets

are dropped by the policer, while green and yellow packets are

allowed to proceed. Yellow packets are treated with lower priority

than green packets in scheduling in the QoS shaper. (4) Traffic
shaping: The QoS shaper uses a token bucket to smooth traffic

bursts and ensures that the outgoing traffic flow complies with

desired flow bandwidth contracts, which is subject to the session’s

aggregate MBR (AMBR).

For non-QoS flows, packets bypass the trTCM and are directed

to a separate shaper for non-QoS flows. Although these packets do

not receive differentiated (preferntial) treatment, the shaper still

applies a token bucket to regulate the flow rate in accordance with

the session’s AMBR to ensure fairness. To enforce the correct rate

and achieve fairness, the token update rate is computed separately

1
We set sched_latency_thresh to 50ms, which delivers optimal performance in our

testing.
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for QoS and non-QoS flows. For QoS flows, the token update rate

𝑅QoS is defined as:

𝑅QoS = min

{
GBR + AMBR − GBR

2

,MBR

}
. (1)

For non-QoS flows, the token update rate 𝑅non-QoS is the residual

rate:

𝑅non-QoS = AMBR − 𝑅QoS . (2)

This ensures that compliant QoS flows are prioritized, non-

compliant flows are penalized, and best-effort traffic is fairly shaped,

while maintaining adherence to the session’s flow bandwidth con-

tracts (i.e., AMBR).

3.5 L25GC+ Network Slicing
L
2
5GC+ incorporates the 3GPP-compliant network slicing directly

using free5GC’s implementation
2
. The NSSF in the control plane

(Fig. 4) is responsible for assigning UEs to the appropriate network

slice based on their subscription profiles, service requirements, or

other operator-specific criteria. Upon receiving a UE request, the

AMF determines the slice by querying the NSSF for the mapping

between the S-NSSAI and the slice. Based on the result, the AMF

dispatches the request to slice-specific instances of the control plane

NFs.

Resource multiplexing across 5GC slices: Beyond enabling ser-

vice differentiation, L
2
5GC+ also enables resource multiplexing

across slices
3
to reduce polling cost. Instances of non-security-

critical NFs, such as the AMF, and SMF can be directly shared

across slices to amortize the CPU cost of busy polling in the under-

lying shared memory processing. When a shared instance becomes

saturated, as detected by our dynamic rate limiter (§3.3), L
2
5GC+

triggers the scaling of additional instances. Specifically, when the

measured goroutine scheduling latency (EWMAt)) exceeds the pre-
configured threshold (sched_latency_thresh), while the number

of in-progress (Ecurrent) is also higher than the concurrency limit

of the instance (Emax), it indicates the overload of current instance.

At this point, L
2
5GC+ instantiates additional instances. L

2
5GC+

also coordinates with gNB to re-balance the load when the AMF

instances are scaled up.

This coordination follows the guidance of 3GPP TS 23.501 [9],

where AMF instances share the relative capacity (referred to as

“weight factor” by 3GPP) with the gNB via NGAP (Next Genera-

tion Application Protocol) messages. While 3GPP leaves the exact

form of the weight factor open, L
2
5GC+ defines it as the ratio

𝐸current/𝐸max to accurately reflect the current load of an AMF in-

stance. The gNB uses this information to distribute UE requests

proportionally across available AMF instances, ensuring load bal-

ancing and avoiding overload. This design allows L
2
5GC+ to mini-

mize the polling cost in shared NFs and exploits the elasticity of a

decoupled 5GC. A comprehensive evaluation of this slicing-based

multiplexing strategy is part of our ongoing work.

2
https://github.com/free5gc/nssf.git

3
To clarify, we focus on the slicing of the core network, rather than end-to-end network

slicing which additionally includes RAN and backhaul. However, the discussion is

generally applicable as part of an end-to-end network slicing design.
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Figure 8: Roadmap of L25GC+. L25GC+ keeps adopting updates from
free5GC [4].

3.6 Roadmap of L25GC+
As shown in the Fig. 8, the development of L

2
5GC+ closely aligns

with the free5GC’s releases. We continuously adapt free5GC’s latest

features, such as 3GPP Release 17 compliance, network slicing

to make sure L
2
5GC+ remains up-to-date and feature-rich. The

development of X-IO [30] enables the rapid evolution of L
2
5GC+

by seamlessly incorporating updates from free5GC.

Following the upcoming official release of NR-DC in free5GC,

we plan to release NR-DC in L
2
5GC+ as well. The NR-DC exten-

sion improves both throughput and mobility resilience by allowing

User Equipments (UEs) to simultaneously connect to multiple base

stations (gNBs in 5G), facilitating seamless handovers under high

mobility scenarios. Looking forward, our next milestone is the

development of a production-ready, SmartNIC-offloaded UPF to

enhance the user plane performance of L
2
5GC+.

4 Evaluation
4.1 Microbenchmarking the Rate Limiter
Concurrent event generation: We select the PDU session estab-

lishment procedure to evaluate the effect of the rate limiter, as this

UE task places the heaviest load on the control plane. To apply

maximum stress to the core network, we generate concurrent PDU

session establishment events. We first register a batch of 32 UEs

with the 5GC. Once all these registrations complete, we instruct all

of these UEs to simultaneously issue PDU Session Establishment Re-
quests to the core network. This ensures that multiple PDU Session
Establishment Requests arrive at the AMF within a short time inter-

val. After the current batch is completed, we issue another batch of

32 PDU Session Establishment Requests. We developed a customized

UE/RAN simulation script to achieve precise control over the timing

for generating the concurrent PDU session establishment events.

Analysis: To analyze the change on the completion time of PDU

session establishment events as the rate limiter adjusts the 𝐸max

(shown in Fig. 9 (a)), we order each event based on its issue time and

collect the corresponding completion time in Fig. 9 (b). Note that

the x-axis in Fig. 9 (a) shows the absolute time in seconds, while the

x-axis in Fig. 9 (b) shows the relative order between distinct PDU

session establishment events, and doesn’t reflect the absolute time.

https://github.com/free5gc/nssf.git
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Figure 9: Microbenchmark results on rate limiter: (a) The rate limiter
adapts the number of goroutines (𝐸max) to the actual in-progress
events (𝐸current); (b) The completion time of PDU session establish-
ment reduces as the 𝐸max scales up.

In Fig. 9 (a), the rate limiter adjusts the 𝐸max following Algorithm 1,

every 500 milliseconds.

As shown in Fig. 9 (b), the first batch (1-32) of PDU session

establishment events experience a sharp increase in latency: the

completion time increases from 84 milliseconds for the first event

to 952 milliseconds by the 32nd event. This is because the maxi-

mum number of concurrent events 𝐸max was initially limited to 1,

resulting in constrained processing capacity and increased queue

delay.

This mismatch between 𝐸max and 𝐸current triggers the adjust-

ments in the rate limiter, as described in Line#6-9 in Algorithm 1.

Since the 𝐸max remains below 6 during the first 23 seconds (see

Fig. 9 (a)), the scheduler latency remains low, repeatedly activating

Line#8-9 in Algorithm 1 to incrementally increase 𝐸max, i.e., more

goroutines are spawned to process the events. Consequently, the

completion time is reduced to approximately 100 milliseconds after

processing around 50 events.

Eventually, 𝐸max stabilizes around 8, after multiple rounds of

adjustment, which aligns with our offline profiling in Fig. 3, i.e.,
optimal latency performance occurs when the number of goroutines

is limited to a range between 8 and 16.

Table 1 compares the average completion time of 32 concurrent

PDU session establishment events. With the rate limiter enabled,

L
2
5GC+ achieves a latency reduction of 1.5× compared to L

2
5GC+

without the rate limiter and 1.96× compared to free5GC. The un-

bounded goroutine creation in L
2
5GC+ without the rate limiter

leads to excessive context switching and scheduling overhead, while

free5GC incurs additional latency from kernel-based networking.

Table 1: Average completion time of 32 concurrent PDU session
establishment event.

Platforms
L25GC+

w/ rate limiter
L25GC+

w/o rate limiter free5GC [4]

0.23 second 0.35 second 0.45 second

4.2 Impact of Fairness in QoS Support
We focus on verifying the fairness provided by the UPF in L

2
5GC+ to

enforce fair sharing of excess bandwidth in the user plane between

a QoS flow and a non-QoS flow. The test setup involves two con-

current UDP flows, generated by two pairs of iperf clients/servers

running on the data network and the UE/RAN simulator. We evalu-

ate two cases with distinct configurations: (1) Case 1 uses a GBR of

2 Mbps and the MBR of 5 Mbps for the QoS flow; (2) Case 2 uses the

GBR of 4 Mbps and the MBR of 7 Mbps for the QoS flow. In both

cases, the AMBR of 10 Mbps is set for the overall session, limiting

the total throughput that flows in the same session can utilize. Both

the QoS flow and the non-QoS flow attempt to transmit at 10 Mbps.
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Figure 10: L25GC+ provides fairness in sharing the excess bandwidth
between QoS and non-QoS flows: In Case 1, QoS flow receives 5 Mbps (2

Mbps guaranteed + 3 Mbps excess) and non-QoS flow receives 5 Mbps (en-

tirely from excess). In Case 2, QoS flow receives 7 Mbps (4 Mbps guaranteed

+ 3 Mbps excess) and non-QoS flow receives 3 Mbps (entirely from excess).

Based on the design in §3.4, the token update rate for the QoS

flow in Case 1 is calculated as:

𝑅QoS = min

(
2Mbps + 10Mbps − 2Mbps

2

, 5Mbps

)
= 5Mbps (3)

The token update rate for the non-QoS flow in Case 1 is calculated

as:

𝑅non-QoS = AMBR − 𝑅QoS = 10Mbps − 5Mbps = 5Mbps (4)

Similarly, the token update rates for the QoS flow and non-QoS

flow in Case 2 are calculated as 7Mbps and 3Mbps, respectively.

Fairness analysis of Case 1: Given the parameters (GBR = 2

Mbps, MBR = 5 Mbps, and AMBR = 10 Mbps), the excess bandwidth

available for allocation is AMBR − GBR = 8Mbps. Ideally, the QoS

flow and non-QoS flow receive half of this excess (8/2 = 4Mbps),

resulting in QoS flow get GBR + 4Mbps = 6Mbps in total and non-

QoS flow get 4Mbps. However, since the QoS flow is capped by its

MBR at 5 Mbps, it cannot utilize the full 6 Mbps. The unused 1 Mbps

is thus reallocated to the non-QoS flow, which increases its share

to 5 Mbps. In total, QoS flow receives 5 Mbps (2 Mbps guaranteed +

3 Mbps excess) and non-QoS flow receives 5 Mbps (entirely from

excess). This allocation achieves max-min fairness in sharing of the

excess bandwidth.

Fairness analysis of Case 2: Given the parameters (GBR = 4

Mbps, MBR = 7 Mbps, and AMBR = 10 Mbps), the excess bandwidth

available for allocation is AMBR − GBR = 6Mbps. Ideally, the QoS

flow and non-QoS flow receive half of this excess (6/2 = 3Mbps),

resulting in QoS flow get GBR + 3Mbps = 7Mbps in total (which

doesn’t violate MBR) and non-QoS flow get 3Mbps. This allocation

also achieves fairness in sharing the excess bandwidth.
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Both observations are consistent with the throughput measure-

ments of QoS and non-QoS flows in L
2
5GC+, as shown in Fig. 10 (1)

and (2). The session’s AMBR limits the total available bandwidth to

10 Mbps and the UPF in L
2
5GC+ fairly allocates excess bandwidth

to the non-QoS flows. Throughput achieved by the QoS flow com-

plies with both GBR and MBR for the flow. Both flows are shaped

to remain within their session constraints without causing any

starvation.

4.3 Holistic System Evaluation on NSF Fabric
Testbed [11]

Figure 11: The topology setup on NSF Fabric.

Fabric testbed setup:We deployed a geographically distributed

testbed on the NSF Fabric testbed. As shown in Fig. 11, the testbed

spans three nodes located across multiple Fabric sites, including

Tokyo, Hawaii, and Seattle. Each node is allocated with 16 CPU

cores and 64GB RAM. The Tokyo node hosts the core network.

We deployed the control plane and user plane on the same node.

The Hawaii node runs the simulated UEs and RAN to generate

user events and data traffic. We use the UE & RAN simulator from

L
2
5GC [14]. The Seattle node is used to deploy the data network.

This distributed deployment helps to having realistic propagation

delays to emulate a large-scale WAN-like environment.

We quantify the latency reduction and scalability improvement

offered by L
2
5GC+’s shared memory SBI compared to the kernel-

based SBI in free5GC, particularly in handling concurrent user

sessions (from 4 to 64). We measure the end-to-end latency for

key events in the 5G control plane, including UE registration, PDU

session establishment, and paging (transitioning UEs from idle to

active state).
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Figure 12: End-to-end latency of various control plane events on NSF
Fabric testbed [11].

Analysis: As shown in Fig. 12, L
2
5GC+ consistently outperforms

free5GC for all measured events, maintaining lower latency as the

number of concurrent UEs increases. Specifically, L
2
5GC+ reduces

UE registration latency by up to 3.5×, PDU session establishment

latency by up to 10×, and paging latency by 1.3×. These results
demonstrate the benefit of L

2
5GC+’s shared memory SBI and the

feasibility of NSF Fabric as a testbed for a wide-area deployment.

5 Related Work
Open-source 5GC Implementations. Popular open-source 5GC
offerings are free5GC [4], OAI-core [5], Open5GS [6], and SD-

core [8]. Table 2 compares L
2
5GC+ with other open-source 5GCs

on important features. Among them, L
2
5GC+ maintains close align-

ment with free5GC, actively integrating its latest features, while in-

troducing a range of advanced capabilities beyond existing offerings,

such as fairness-enhanced QoS support in the user plane, dynamic

rate limiter for control plane NFs, and low-latency shared-memory-

based SBI. These enhancements make L
2
5GC+ more feature-rich

than other open-source 5GCs. The full-fledged network slicing sup-

port and NR-DC support make L
2
5GC+ viable for a broad range of

5G use cases, which require differentiated service treatment and

better mobility resilience.

Table 2: Comparison of Existing Open-source 5GC Implementations.

Features
Network
Slicing

NR-DC
Support

Fair QoS
Support

Control Plane
Rate Limiter

Low-latency
SBI

L
2
5GC+ ✓ ✓ ✓ ✓ ✓

free5GC [4] ✓ ✓ ✗ ✗ ✗

OAI-core [5] ✓ ✗ ✗ ✗ ✗

Open5GS [6] ✓ ✗ ✗ ✗ ✗

SD-core [8] ✓ ✗ ✗ ✗ ✗

User plane optimizations. As 5G aims to deliver low-latency

Internet access to end users, a significant body of work has focused

on optimizing the UPF. [28] implements the UPF using eBPF/XDP

in the Linux kernel, however, the performance of eBPF/XDP is

significantly inferior to DPDK under high load [31]. Prior efforts

such as [20] and [36] propose offloading the UPF to P4 switches

to benefit programmable data plane acceleration. However, these

switch-based approaches faces practical limitations due to limited

buffering capacity of P4 switches, which can worsen the packet

loss and retransmissions, hurting user plane performance. Instead,

Synergy [27], Hybrid-UPF [34], and AccelUPF [12] propose using

P4-capable SmartNICs as an alternative offloading target. Smart-

NICs offer a more viable option by combining programmable data

plane acceleration with deeper buffering, making them better suited

for production-grade UPF deployments.

Control plane optimizations. In addition to user plane, substan-

tial work has focused on reducing control plane latency, especially

following the softwarization of cellular cores beginning with 4G

EPC [18, 23–25, 29, 32]. This trend has continued into the 5G era,

where the decoupled architecture of the 5GC control plane further

amplified the need for low-latency control plane operations.

Several efforts have attempted to replace or improve the 3GPP

SBI, e.g., [15] uses gRPC to replace the default HTTP/REST APIs,

but still incurring expensive costs related to serialization and kernel

sockets. L
2
5GC [14] takes a more advanced approach by replacing

the kernel-based SBI with low-latency shared memory communi-

cation. However, its brute-force implementation exposes shared
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memory primitives directly to Golang-based NFs, violating 3GPP

compliance and failing to scale across multiple user sessions. This

limitation is addressed in L
2
5GC+ through the introduction of X-

IO [30].

Other efforts have explored adjacent aspects of control plane

latency. Neutrino [10] reduces latency between the RAN and the

core by minimizing the serialization overheads and replicating user

state across broader geographical area to accelerate handovers. This

could be a good complimentary to L
2
5GC+, which targets latency

reduction within the 5GC. FlexCore [33] implements an XDP-based

SCTP load balancer between RAN and AMF, which could comple-

ment to L
2
5GC+’s rate limiter by improving load distribution across

AMF instances to reduce thrashing. CoreKube[17] consolidates con-

trol plane NFs (e.g., AMF, SMF) into a single stateless worker and

relies on external storage function (UDSF) for state management.

However, this model introduces extra state synchronization over-

heads and undermines the decoupled nature of 5GC, making it

harder to independently scale NFs.

Characterization on cellular cores. There has been work on

characterizing the behavior of cellular cores. Prior efforts includes

end-to-end performance measurements on operational 5G systems

using both Non-Standalone (NSA) [37] and Standalone (SA) archi-

tectures [26, 38]. Other studies, such as [21] and [16], characterized

and modeled the control plane traffic within cellular cores, which

provides synthetic workloads that are useful for testing and evalu-

ating L
2
5GC+ when real user traffic is unavailable due to regulatory

constraints.

6 Conclusion
We presented L

2
5GC+, a high-performance 3GPP-compliant 5GC

designed especially to deliver low-latency control plane operations.

L
2
5GC+ introduces the X-IO interface to bridge the semantic gap be-

tween OpenNetVM’s shared memory operation and Golang-based

3GPP NFs. L
2
5GC+ incorporates a range of novel features, including

a dynamic rate limiter at the AMF to prevent goroutine thrashing

under load, a fairness-enhanced QoS capability in the UPF to bal-

ance bandwidth between QoS and non-QoS flows, and provides full

support for network slicing.

Future work includes the release of NR-DC support and the

planned public deployment on NSF Fabric testbed. This deploy-

ment offers a promising opportunity for the research community to

perform detailed control plane analysis under realistic conditions.

Such fine-grained, internal analysis of 5GC control plane at scale

remains limited due to the black-box nature of commercial 5GC de-

ployment, where core internals are not exposed for analysis. Instead,

L
2
5GC+ provides an open-source, high-performance, and compre-

hensive 5GC solution, enabling visibility into NF interactions and

bottlenecks.
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