
SURE: Secure Unikernels Make Serverless Computing

Rapid and Efficient

Federico Parola★ Shixiong Qi† Anvaya B. Narappa†

K. K. Ramakrishnan† Fulvio Risso★

†University of California, Riverside ★Politecnico di Torino

2024
Visit us at:
https://kknetsyslab.cs.ucr.edu/

@ 2024 released for use

under a CC BY-SA license.

https://kknetsyslab.cs.ucr.edu/
https://creativecommons.org/licenses/by-sa/4.0/

2

Serverless Computing

• A programming abstraction that enables users
to upload programs, run them at (virtually) any
scale, and pay only for the resources used

• Serverless support for loosely-coupled
microservices

• Virtualized Runtime

• Fine-grained isolation at the individual function level

• Inter-function networking

• Communication between decoupled functions

• Service mesh and sidecar

• Facilitate orchestration of serverless functions in
distributed environments

or Function-as-a-Service (FaaS)

Is today‘s serverless architecture enough support for loosely
coupled microservices? – Isolation and Performance

Kernel protocol stack

Message
Broker

Kernel
protocol

stack

veth-pair

Container

Function 1

Kernel
protocol

stack

veth-pair

User
Container

Physical NIC

U
se

rsp
a

ce
K

ern
el sp

ace

Sidecar
Container

Function 2

Kernel
protocol

stack

veth-pair

User
Container

Sidecar
Container

A Single Node View

3

State of the Landscape #1

• Isolating serverless functions in open, shared cloud

• Unikernel can make serverless functions agile and
enable strong isolation

• ∼4× faster startup compared to Docker containers

• Unikernel offers single address space

➢Exploration of Unikernels for serverless and microservices
➢ USETL [APSys’19], UaaF [IWQoS’20], SEUSS [EuroSys’20],

NanoVMs

➢ MirageOS [ASPLOS’13], OSv [ATC’14], LightVM [SOSP’17],
Unikraft [EuroSys’21]

The tradeoff between isolation and agility in virtualized runtime

Virtualized runtime Isolation Startup speed

Container Weak Moderate

Full-size VM Strong Bad

Unikernel Strong Good

Problem #1: Single-
address-space unikernel is
considered not safe

• UK BB: Bare-Bones UniKraft

• UK and SURE use QEMU

• OSv: OSv unikernel + Firecracker

• Docker: docker container

4

State of the Landscape #2

• Cost of kernel-based inter-function networking

• Context switch, interrupt, copy, protocol processing, serialization/de-
serialization

• Solution: shared memory processing

• Faasm [ATC’20], SPRIGHT [SIGCOMM’22], Pheromone [NSDI’23],
Ditto [SIGCOMM’23], YuanRong [SIGCOMM’24]

• Pass-by-reference instead of pass-by-value

Inter-function networking in serverless computing

Kernel
protocol

stack

Kernel protocol stack

veth-pair

Container

Kernel
protocol

stack

veth-pair

Container

U
sersp

ace
K

e
rn

e
l sp

ace

copy copy

cxt sw cxt swirq irq

irq irq

proto. proto.

ser. deser.

Kernel
protocol

stack

Kernel protocol stack

veth-pair

Container

Kernel
protocol

stack

veth-pair

Container

U
sersp

ace
K

e
rn

e
l sp

ace

ref
Bypass the
kernel!

Pass by
reference!

Shared Mem. Pool data

Kernel-based Networking Shared Memory Processing

Problem#3:
Shared memory processing
is limited to a single node

Problem #2:
Shared memory processing
is considered not safe

Problem #1: Single-
address-space unikernel is
considered not safe

5

State of the Landscape #3

• Existing design: sidecar is an individual component (e.g., container)
independent of the function

• Intermediated by the TCP/IP stack or by Unix Domain Socket

• Incur unnecessary networking overheads

• Optimization: eBPF-based sidecar

• SPRIGHT [SIGCOMM’22], Cilium

• Attached to in-kernel eBPF hooks

• No additional the userspace-kernel boundary crossing

• No additional container networking overhead

Service mesh support in serverless computing

Problem#3:
Shared memory processing
is limited to a single node

Problem #2:
Shared memory processing
is considered not safe

Problem#4:
eBPF is not suitable for
unikernels

Problem #1: Single-
address-space unikernel is
considered not safe

6

Problem#3:
Shared memory processing
is limited to a single node

Problem #2:
Shared memory processing
is considered not safe

Problem#4:
eBPF is not suitable for
unikernels

Problem #1: Single-
address-space unikernel is
considered not safe

Federico Parola 2 2

Unikernels

Shared-memory
intra-node data plane

Zero-copy inter-node
TCP/IP stack (Z-stack)

Library-based sidecar

Worker node Worker node
Unikernel 1

I/O Side
Car

Shared memory pool

SURE Gateway SURE Gateway

Unikernel 2

I/O Side
Car

Shared
memory pool

Unikernel 3

I/O Side
Car

Z-stack

DPDK

Z-stack

DPDK

MPK-based call gate

User Fn User Fn User Fn

Our solution SURE
Secure Unikernels Make Serverless Computing Rapid and Efficient

Consolidated proto.
processing by SURE Gateway

Design#4: eBPF-like sidecar
with L7 visibility in
unikernels

Design#2: Enhance intra-
unikernel isolation to
sandbox user code

Design#1: Secure shared
memory while retaining its
high performance

Design#3: Extended zero-
copy networking to be
distributed

7

Library-based SURE Sidecar

• Deploy the sidecar as a library linked into the function code within the
unikernel

• The sidecar contains a sequence of handlers that perform certain sidecar
functionalities

• The unikernel’s single-address-space simplifies data exchange between sidecar
and user code

• Invocation is made by procedure call

• overcome the shortcomings of an individual userspace sidecar.

Based on the LibOS design of unikernels

8

Memory-level isolation in SURE

• MPK is a hardware-level, intra-process memory isolation feature in Intel’s server CPUs (since 2019)

• PKRU (Protection Key Register User)

• A per-core, 32-bit CPU register defines the access privilege of MPK, described by 2 bits

• “Access Disable” (AD) and “Write Disable” (WD)

• A total of 16 keys available within a SURE function

• Read/Write (0, 0), Read-Only (0, 1), or No-Access (1, ×)

A Primer on MPK (Memory Protection Key)

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1

2

3

… …

Page … MPK …

1 key-1

2

3

… …

Page … MPK …

1 key-1

2 key-3

3 key-16

… …

9

Memory-level isolation in SURE

• #1 WRPKRU (Write Data to PKRU)

• x86 instruction to change the access privilege of the MPK
by modifying PKRU

• A SURE function may access more than 16 pages!

• Not feasible to tag each page with a distinct key

• Memory related to Unikernel TCB components
is managed by WRPKRU

SURE uses two approaches to switch the access privilege of a memory page

Coarse-grained but faster Fine-grained but slower

• #2 “PTE Update”

• Update the 4 bits reserved for the MPK key ID in the PTE

• Then flush the corresponding TLB entry

• Allow for more scalable access management

• Shared memory buffers are managed by “PTE
Update”

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1 key-1

2 key-3

3 key-16

… …

10

Memory-level isolation in SURE

• #1 WRPKRU (Write Data to PKRU)

• x86 instruction to change the access privilege of the MPK
by modifying PKRU

• A SURE function may access more than 16 pages!

• Not feasible to tag each page with a distinct key

• Memory related to Unikernel TCB components
is managed by WRPKRU

SURE uses two approaches to switch the access privilege of a memory page

Coarse-grained but faster Fine-grained but slower

• #2 “PTE Update”

• Update the 4 bits reserved for the MPK key ID in the PTE

• Then flush the corresponding TLB entry

• Allow for more scalable access management

• Shared memory buffers are managed by “PTE
Update”

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1 key-1

2 key-3

3 key-16

… …
0 0

key-1
(R/W)

11

Memory-level isolation in SURE

• #1 WRPKRU (Write Data to PKRU)

• x86 instruction to change the access privilege of the MPK
by modifying PKRU

• A SURE function may access more than 16 pages!

• Not feasible to tag each page with a distinct key

• Memory related to Unikernel TCB components
is managed by WRPKRU

SURE uses two approaches to switch the access privilege of a memory page

Coarse-grained but faster Fine-grained but slower

• #2 “PTE Update”

• Update the 4 bits reserved for the MPK key ID in the PTE

• Then flush the corresponding TLB entry

• Allow for more scalable access management

• Shared memory buffers are managed by “PTE
Update”

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1 key-1

2 key-3

3 key-16

… …
0 0

key-1
(R/W)

1 1

key-1
No Access

12

Memory-level isolation in SURE

• #1 WRPKRU (Write Data to PKRU)

• x86 instruction to change the access privilege of the MPK
by modifying PKRU

• A SURE function may access more than 16 pages!

• Not feasible to tag each page with a distinct key

• Memory related to Unikernel TCB components
is managed by WRPKRU

SURE uses two approaches to switch the access privilege of a memory page

Coarse-grained but faster Fine-grained but slower

• #2 “PTE Update”

• Update the 4 bits reserved for the MPK key ID in the PTE

• Then flush the corresponding TLB entry

• Allow for more scalable access management

• Shared memory buffers are managed by “PTE
Update”

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1 key-1

2 key-3

3 key-16

… …
0 0

key-1
(R/W)

1 1

key-1
No Access

key-2

13

Memory-level isolation in SURE

• #1 WRPKRU (Write Data to PKRU)

• x86 instruction to change the access privilege of the MPK
by modifying PKRU

• A SURE function may access more than 16 pages!

• Not feasible to tag each page with a distinct key

• Memory related to Unikernel TCB components
is managed by WRPKRU

SURE uses two approaches to switch the access privilege of a memory page

Coarse-grained but faster Fine-grained but slower

• #2 “PTE Update”

• Update the 4 bits reserved for the MPK key ID in the PTE

• Then flush the corresponding TLB entry

• Allow for more scalable access management

• Shared memory buffers are managed by “PTE
Update”

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1 key-1

2 key-3

3 key-16

… …
0 0

key-1
(R/W)

1 1

key-1
No Access

key-2key-16

14

Secure APIs based on SURE call gates

• Only call gate can update access privilege

• Via WRPKRU or PTE Update

• Easier to work with binary inspection to prohibit illegal updates to access privilege

• Enhanced unikernel TCB (from Unikraft) in SURE

• Prevent unwanted update or access to PKRU register and PTEs of protected pages

• Avoid Privilege Escalation of MPK in a single address space

• Refer to the paper

A “call gate” abstraction for user code to safely interact with protected pages

Unikernel 1

I/O Sidecar

Shared memory pool

User Fn

TCB

Unikernel 2

I/O Sidecar

User Fn

Call gate Call gate

TCB

15

Microbenchmark Analysis

Baseline: a variant of SURE with MPK disabled

• MPK in SURE has limited penalty

• With a single connection: SURE shows 1.2-1.3× increased delay compared to the baseline.

• With increasing concurrent connection: SURE’s RPS decreases (e.g., 1.8× reduction at 64 connections)

• Relatively small overhead for the reward of robust memory-level isolation

Cost of Memory Isolation with SURE

Testbed: One sm110p node on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15

Single connection 64B messages

16

Realistic Workload Evaluation

Online Boutique Microservice Chain [1]

• Intense web workload with 10 functions

• 6 different function chains

Serverless Alternatives

• Knative

• SPRIGHT [SIGCOMM’22]

• NightCore [ASPLOS’21]

Two distinct deployment settings:

1) Intra-node

2) Inter-node: Orange and Green functions deployed on distinct nodes

Experiment setting

Frontend

Service

Cart

Service

Recomm.

Service

Catalog

Service

Currency

Service

Shipping

Service

Payment

Service

Email

Service

Ad

Service

Checkout

Service

Requests

Online Boutique Application[1]

[1] https://github.com/GoogleCloudPlatform/microservices-demo

Testbed: Three sm110p nodes on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15

https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2

17

0

20

40

60

80

100

cc=16 cc=32 cc=64

R
P

S
 (x

 1
K

)

RPS (Intra-node)

SURE SPRIGHT

NightCore Knative

0

10

20

30

40

50

60

cc=16 cc=32 cc=64

R
PS

 (x
 1

K
)

RPS (Inter-node)

SURE SPRIGHT Knative

0

5

10

15

20

25

30

1

10 19 28 37 46 55 64 73 82 91

1
0

0

R
e

sp
o

n
se

 T
IM

E
 (

m
s)

% of Requests

Latency (Intra-node)

SURE

SPRIGHT

NightCore

Knative

0

5

10

15

20

25

30

1

10 19 28 37 46 55 64 73 82 91

1
0

0

R
e

sp
o

n
se

 T
IM

E
 (

m
s)

% of Requests

Latency (Inter-node)

SURE
SPRIGHT
Knative

0

20

40

60

80

100

cc=16 cc=32 cc=64

R
P

S
 (x

 1
K

)

RPS (Intra-node)

SURE SPRIGHT

NightCore Knative

0

10

20

30

40

50

60

cc=16 cc=32 cc=64

R
PS

 (x
 1

K
)

RPS (Inter-node)

SURE SPRIGHT Knative

0

5

10

15

20

25

30

1

10 19 28 37 46 55 64 73 82 91

1
0

0

R
e

sp
o

n
se

 T
IM

E
 (

m
s)

% of Requests

Latency (Intra-node)

SURE

SPRIGHT

NightCore

Knative

0

5

10

15

20

25

30

1

10 19 28 37 46 55 64 73 82 91

1
0

0

R
e

sp
o

n
se

 T
IM

E
 (

m
s)

% of Requests

Latency (Inter-node)

SURE
SPRIGHT
Knative

cc=16 cc=8

Realistic Workload Evaluation
Requests per second & Tail latency

• SURE is an order of magnitude better than any alternatives we evaluated
• Performance improvement attributed to the use of distributed zero-copy data plane

and lightweight library-based sidecar

18

Realistic Workload Evaluation

• Our metric - “CPU Cost Per RPS” (CCR)

• Defined as
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑅𝑃𝑆

• Lower values of CCR suggest that each request requires
fewer CPU cycles

• A more efficient use of the CPU

• SURE is more efficient than NightCore and Knative

• No kernel networking; More lightweight sidecar; etc

• SURE is less efficient than SPRIGHT at a low concurrency
(≤ 16 for intra-node and ≤ 4 for inter-node)

• Comes from polling cost

• SURE is more efficient than SPRIGHT under high
concurrency levels

• SPRIGHT uses kernel for inter-node traffic, CPU usage
grows substantially under high concurrency levels

• More concurrent processing amortizes the polling cost

CPU efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64

CP
U

 c
os

t
p

er
 R

PS

CPU Efficiency (Intra-node)

SURE SPRIGHT NightCore Knative

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64

C
P

U
 c

o
st

 p
e

r
R

P
S

CPU Efficiency (Inter-node)

SURE SPRIGHT Knative

Worse
efficiency

Horizontal axis: concurrency

Better
efficiency

19

Conclusion

• SURE is a unikernel-based, lightweight serverless framework

• Unikernel-based runtime brings 4× faster startup VS. docker containers

• MPK-based call gates to enable fine-grained memory access management

• Mitigate the vulnerabilities of memory space sharing

• While retaining high performance and efficiency

• Offer zero-copy inter-function networking and lightweight library-based sidecars

• Yield up to 8× RPS improvement compared to SPRIGHT in a distributed environment

• While being more secure

• SURE is open-sourced
• ☞ Find SURE at: https://github.com/ucr-serverless/sure

• If you have any questions or comments, please feel free to email us

(federico.parola@polito.it and shixiong.qi@uky.edu)

Code:

Paper:

https://github.com/ucr-serverless/sure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

