Visit us at:
Smcg on Clowd Computing 2024 https://kknetsyslab.cs.ucr.edu/

: Secure Unikernels Make Serverless Computing
apid and “fficient

Federico Parola* T Anvaya B. Narappaf
K. K. Ramakrishnant Fulvio Risso*
tUniversity of California, Riverside *Politecnico di Torino
f,,\ :.?i i \".}
£a)\ b 82 @ ©
v g v Politecnico
\ Mkt di Torino
{\ 1859 o
@ 2024 released for use N\ “d"
under a CC BY-SA license. TNt



https://kknetsyslab.cs.ucr.edu/
https://creativecommons.org/licenses/by-sa/4.0/

"

Serverless Computing
or Function-as-a-Service (FaaS)

* A programming abstraction that enables users
to upload programs, run them at (virtually) any
scale,and pay only for the resources used

* Serverless support for loosely-coupled
microservices
* Virtualized Runtime
* Fine-grained isolation at the individual function level
* Inter-function networking
* Communication between decoupled functions
* Service mesh and sidecar

* Facilitate orchestration of serverless functions in
distributed environments

A Single Node View

Message

Container

Kernel
protocol
stack

aoeds [awiay | asedssasn

veth-pair

4 I EEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN EEEEEEEEEEEEEEEEEREDND
|}

Function 1

User
Container

—

Kernel
protocol
stack

veth-pair

Function 2

User
Container

—

Kernel
protocol
stack

veth-pair

Kernel protocol stack

Is today’s serverless architecture enough support for loosely

coupled microservices? — Isolation and Performance




State of the Landscape

The tradeoff between isolation and agility in virtualized runtime

* Isolating serverless functions in open, shared cloud

Virtualized runtime Isolation Startup speed
Container Weak & Moderate &
Full-size VM Strong Bad X
Unikernel Strong Good

* Unikernel can make serverless functions agile and
enable strong isolation

* ~4X faster startup compared to Docker containers

* Unikernel offers single address space

» Exploration of Unikernels for serverless and microservices

» USETL [APSys’1 9], UaaF [IWQo0S’20], SEUSS [EuroSys’20],
NanoVMs

» MirageOS [ASPLOS’13], OSv [ATC’ 4], LightVM [SOSP’17],
Unikraft [EuroSys’21]

ingle-
address-space unikernel is

considered not safe

e UK BB: Bare-Bones UniKraft
UK and SURE use QEMU

e OSv: OSv unikernel + Firecracker

 Docker: docker container



"
State of the Landscape 2

Inter-function networking in serverless computing

* Cost of kernel-based inter-function networking
* Context switch, interrupt, copy, protocol processing, serialization/de-
serialization
* Solution: shared memory processing

e Faasm [ATC’20], SPRIGHT [SIGCOMM’22], Pheromone [NSDI’23],
Ditto [SIGCOMM’23],YuanRong [SIGCOMM’24]

* Pass-by-reference instead of pass-by-value

Shared Mem. Poo ]

-

Container Container

Kernel
protocol protocol
stack stack

prof ocol

oeds |aula)y %neds.lasn

veth-pair veth-pair

Kernel protocol stack

o Kernel-based Networking Shared Memory Processing

Single-
address-space unikernel is
considered not safe

Shared memory processing
is considered not safe

Shared memory processing
is limited to a single node




State of the Landscape

Service mesh support in serverless computing

Single-
address-space unikernel is

* Existing design: sidecar is an individual component (e.g., container)
independent of the function

* Intermediated by the TCP/IP stack or by Unix Domain Socket
* Incur unnecessary networking overheads

considered not safe

* Optimization:
* SPRIGHT [SIGCOMM’22], Cilium
 Attached to in-kernel eBPF hooks
* No additional the userspace-kernel boundary crossing

Shared memory processing
is considered not safe

* No additional container networking overhead
Shared memory processing
is limited to a single node

(a) Container-based sidecar | (b) Container-based sidecar

BPF- i
(TCP/IP socket) (with UDS acceleration) (©e based sidecar

Virtualized runtime

| &

eBPF !

Virtualized runtime
sidecar

Virtualized runtime
sidecar |

TCP/IP

vDevice

TCP/IP

vDevice

o A
“TCP/IP

I
I
]
]
I
]
: l,m'ong'am :
]
|
]
]
I

““vDevice *“

eBPF is not suitable for

unikernels




’-"*
Our solution 51U H =

Secure Unikernels Make Serverless Computing Rapid and Efficient Se.cur € 5’?‘7.’ ed :
memory while retaining its

high performance

Unikernels

Worker node Worker node
Unikernel 3 Enhance intra-

Unikernel 1 Unikernel 2

Shared-memory @

(Userfn | [ User Fn ] User Fn unikernel isolation to
intra-node data plane =~ — =~ = ~Cha sandbox user code
/O I
Zero-copy inter-node
TCP/IP stack (z-stack) SN—" dhared Extended zero-
Sh\red memory pool UCU WAl copy networking to be
Consolidated proto. \ Py g

processing by SURE Gateway RE Gateway | (SURE Sateway) | G LLl)

Library-based sidecar @

eBPF-like sidecar
with L7 visibility in

@ MPK-based call gate

unikernels




Library-based SURE Sidecar

Based on the LibOS design of unikernels

* Deploy the sidecar as a library linked into the function code within the
unikernel

* The sidecar contains a sequence of handlers that perform certain sidecar
functionalities

Unikernel’s address space

)} Request Request k runtime
—> log =P Metrics —=-, I\ U q
! Handler Handler 1 \ SELCOCE . A
l ] ' ‘ nction recv()‘_ -
! | P
4l Rate Traffic 2 '
I Controller <+ Filtering <+
‘----------------w

* The unikernel’s single-address-space simplifies data exchange between sidecar
and user code

. . function app() < - — "~ App. lig
* Invocation is made by procedure call Niowini

* overcome the shortcomings of an individual userspace sidecar.




Memory-level isolation in SURE
A Primer on MPK (Memory Protection Key)
* MPK is a hardware-level, intra-process memory isolation feature in Intel’s server CPUs (since 2019)

* PKRU (Protection Key Register User)

* A per-core, 32-bit CPU register defines the access privilege of MPK, described by 2 bits
* “Access Disable” (AD) and “Write Disable” (WD)

* A total of 16 keys available within a SURE function
* Read/Write (0, 0), Read-Only (0, 1), or No-Access (I, X)

Page Table

|
|
i \ann :
|

PKRU register

I 1 key-1
Page 2 [&— : 2 key-3 :
I 3 key-16 4 ! ------
4/:’ ; T
Page 3 I : \ Y J Y J L Y J \ J
I key-1 8 key-3 key-16
|

(R/0) (R/0)  (No Access) (R/W)



Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Not feasible to tag each page with a distinct key * Shared memory buffers are managed by “PTE

* Memory related to Unikernel TCB components Update”
is managed by WRPKRU Coarse-grained but faster Fine-grained but slower
Page Table

- - - "= "= "=-"="="="==== I

: |

Page 1 | I
N\ EIBETES

1 key-1 | PKRU register

(R/0) I (R/O) (No Access) (R/W)

|
I
1
Page 2 &= , 2 key-3 | || AD |
I ------
. | l
Page 3 I : I Y lll Y J \ Y ] \ J
I I key-1 I key-2 key-3 key-16
: |



Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Not feasible to tag each page with a distinct key * Shared memory buffers are managed by “PTE

* Memory related to Unikernel TCB components Update”
is managed by WRPKRU Coarse-grained but faster Fine-grained but slower
Page Table

- - - "= "= "=-"="="="==== I

: |

Page 1 | I
N\ EIBETES

1 key-1 | PKRU register

|
l
|
Page 2 [+ , 2 key-3 | || AD |
I ------
: I I
Page3 I : I Y lll Y J \ Y ] \_'_;
| I I key-1 I key-2 key-3 key-16
I : (R/W) I (R/O)  (NoAccess) (R/W)
|



Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Not feasible to tag each page with a distinct key * Shared memory buffers are managed by “PTE

* Memory related to Unikernel TCB components Update”
is managed by WRPKRU Coarse-grained but faster Fine-grained but slower
Page Table

- - - "= "= "=-"="="="==== I

: |

Page 1 | I
N\ EIBETES

1 key-1 | PKRU register

|
|
|
Page 2 [+ , 2 key-3 | || AD |
I ------
. I |
Page3 I : I Y lll Y J L Y J \_'_’
| : —key1  Dkey2  keys3 key-16
I I No Access | (R/O)  (No Access) (R/W)
|



Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Shared memory buffers are managed by “PTE
* Memory related to Unikernel TCB components Update”

is managed by WRPKRU Coarse-grained but faster Fine-grained but slower

* Not feasible to tag each page with a distinct key

Page Table

= N ETT

|

|

|

|

| | PKRU register
|
Page2 [&———0— key-3 !
! |
|
|
|
|
|

AL AD

f 3 key-16 111/ 0 1|1]1 0| o
Page 3 I L Y X Y J \ Y ] \_'_;
| key-1 key-2 key-3 key-16
| No Access (R/O)  (No Access) (R/W)
|



Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Not feasible to tag each page with a distinct key * Shared memory buffers are managed by “PTE

* Memory related to Unikernel TCB components Update”
is managed by WRPKRU Coarse-grained but faster Fine-grained but slower
Page Table

|m == mmmmm——— -
|

Page 1 |

SN -
- e e - ol
AD|

1/ 1/ 0 1 |1]1

f 3 key-16
Page 3 :

|
!
|
!
| !
|
Page2 [¢———y 2 key-3 | AD | WD
' !
!
|
!
!
|

1 Y J \ Y J \ Y ) \_'_I
| key-1 key-2 key-3 key-16

| No Access (R/0) (No Access) (R/W)

|



Secure APIs based on SURE call gates

A “call gate” abstraction for user code to safely interact with protected pages

* Only call gate can update access privilege
* ViaWRPKRU or PTE Update
* Easier to work with binary inspection to prohibit illegal updates to access privilege

* Enhanced unikernel TCB (from Unikraft) in SURE
* Prevent unwanted update or access to PKRU register and PTEs of protected pages
* Avoid Privilege Escalation of MPK in a single address space
* Refer to the paper

4 Unikernel 1 N 4 Unikernel 2 N

[ User Fn } [ User Fn ]

Call gate Call gate

£~ " 7BV [T

|[ /O ] [SidecarJ: |[ /O ] [Sidecar]:
NI NN DN\ N N J
(—————————————————— N\
: Shared memory pool l
\\ ) |

14



Microbenchmark Analysis

Cost of Memory Isolation with SURE
Baseline: a variant of SURE with MPK disabled
* MPK in SURE has limited penalty

* With a single connection: SURE shows 1.2-1.3% increased delay compared to the baseline.
* With increasing concurrent connection: SURE’s RPS decreases (e.g., | .8% reduction at 64 connections)

* Relatively small overhead for the reward of robust memory-level isolation

Single connection 64B messages
B SURE B baseline —=%— baseline
1617 SURE
,a\ 15 104 15.17 —_
) woo  Phzos  [haas %
£'101 3_3
= 7p)
£ &
— 5'
0 - T T T T
64B 4KB 2 8 32 64
Message size # connections

15 Testbed: One sm110p node on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15



[1] https://github.com/GoogleCloudPlatform/microservices-demo

Realistic Workload Evaluation

Experiment setting

Online Boutique Microservice Chain [1]
* Intense web workload with 10 functions
e 6 different function chains

Serverless Alternatives

* Knative

* SPRIGHT [ 1
* NightCore [ 1

Two distinct deployment settings:

) Intra-node

Requests
Ad . Frontend Checkout Payment
Service Service Service Service
Recomm. Email
Service Service
Catalog Cart Shipping\ Currency
Service Service Service Service

Online Boutique Application(]

2) Inter-node: Orange and Green functions deployed on distinct nodes

16 Testbed: Three sm110p nodes on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15



https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2

17

Realistic Workload Evaluation

Requests per second & Tail latency

RPS (Intra-node) Latency (Intra-node) RPS (Inter-node) Latency (Inter-node)
100 30 60 30
A — ==
g cc=16 0 A é’ — SURE cc=8
80 25 — 25 — —
A L —SURE w SPRIS-iHT
S S Knative
< 60 20 ~ ——SPRIGHT <40 4 20 ~
-l ) i Q
b3 (7] . 5 (7]
o 40 15 & NightCore o 30 15 &
o. Q . o Q.
o 9 Knative o ]
20 10 &« 20 10 &«
v A 4
cc=16 cc=32 cc=64 r— 0 I ,..-.J' o’
0 0
B SURE B SPRIGHT " OO O N WOINST NN O cc=16 cc=32 cc=64 A OO NOVOIINST NN O
= NightCore Knative % of Requests B SURE B SPRIGHT m Knative % of Requests

 SURE is an order of magnitude better than any alternatives we evaluated
* Performance improvement attributed to the use of distributed zero-copy data plane
and lightweight library-based sidecar



Realistic Workload Evaluation
CPU efficiency
* Our metric - “CPU Cost Per RPS” (CCR)

Average CPU utilization
RPS
* Lower values of CCR suggest that each request requires
fewer CPU cycles

* A more efficient use of the CPU

* Defined as

* SURE is more efficient than NightCore and Knative
* No kernel networking; More lightweight sidecar; etc

* SURE is less efficient than SPRIGHT at a low concurrency
(= 16 for intra-node and < 4 for inter-node)

* Comes from polling cost

* SURE is more efficient than SPRIGHT under high
concurrency levels

* SPRIGHT uses kernel for inter-node traffic, CPU usage
grows substantially under high concurrency levels

* More concurrent processing amortizes the polling cost

18

CPU cost per RPS

CPU cost per RPS

1.4
1.2

1
0.8
0.6
0.4
0.2

0 I_ I_ - -— f— — -

14
1.2

1
0.8
0.6
0.4
0.2

0

B SURE|] ® SPRIGHT NightCore Knative

CPU Efficiency (Intra-node)

Worse
efficiency

1 2 4 8 16 32 64

CPU Efficiency (Inter-node)

Better
efficiency

Il Inl Inf unl af _ul _a»
1 2 4 8 16 32 64

B SPRIGHT

Horizontal axis: concurrency

Knative



Conclusion

* SURE is a unikernel-based, lightweight serverless framework
* Unikernel-based runtime brings 4% faster startup VS. docker containers

* MPK-based call gates to enable fine-grained memory access management

* Mitigate the vulnerabilities of memory space sharing

* While retaining high performance and efficiency

* Offer zero-copy inter-function networking and lightweight library-based sidecars
* Yield up to 8% RPS improvement compared to SPRIGHT in a distributed environment

* While being more secure

* SURE is open-sourced
* w Find SURE at: https://github.com/ucr-serverless/sure
* If you have any questions or comments, please feel free to email us
(federico.parola@polito.it and shixiong.qi@uky.edu)

19



https://github.com/ucr-serverless/sure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

