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Serverless Computing
or Function-as-a-Service (FaaS)

* A programming abstraction that enables users
to upload programs, run them at (virtually) any
scale,and pay only for the resources used

* Serverless support for loosely-coupled
microservices
* Virtualized Runtime
* Fine-grained isolation at the individual function level
* Inter-function networking
* Communication between decoupled functions
* Service mesh and sidecar

* Facilitate orchestration of serverless functions in
distributed environments
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Is today’s serverless architecture enough support for loosely

coupled microservices? — Isolation and Performance




State of the Landscape

The tradeoff between isolation and agility in virtualized runtime

* Isolating serverless functions in open, shared cloud

Virtualized runtime Isolation Startup speed
Container Weak & Moderate &
Full-size VM Strong Bad X
Unikernel Strong Good

* Unikernel can make serverless functions agile and
enable strong isolation

* ~4X faster startup compared to Docker containers

* Unikernel offers single address space

» Exploration of Unikernels for serverless and microservices

» USETL [APSys’1 9], UaaF [IWQo0S’20], SEUSS [EuroSys’20],
NanoVMs

» MirageOS [ASPLOS’13], OSv [ATC’ 4], LightVM [SOSP’17],
Unikraft [EuroSys’21]

ingle-
address-space unikernel is

considered not safe

e UK BB: Bare-Bones UniKraft
UK and SURE use QEMU

e OSv: OSv unikernel + Firecracker

 Docker: docker container
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State of the Landscape 2

Inter-function networking in serverless computing

* Cost of kernel-based inter-function networking
* Context switch, interrupt, copy, protocol processing, serialization/de-
serialization
* Solution: shared memory processing

e Faasm [ATC’20], SPRIGHT [SIGCOMM’22], Pheromone [NSDI’23],
Ditto [SIGCOMM’23],YuanRong [SIGCOMM’24]

* Pass-by-reference instead of pass-by-value
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o Kernel-based Networking Shared Memory Processing

Single-
address-space unikernel is
considered not safe

Shared memory processing
is considered not safe

Shared memory processing
is limited to a single node




State of the Landscape

Service mesh support in serverless computing

Single-
address-space unikernel is

* Existing design: sidecar is an individual component (e.g., container)
independent of the function

* Intermediated by the TCP/IP stack or by Unix Domain Socket
* Incur unnecessary networking overheads

considered not safe

* Optimization:
* SPRIGHT [SIGCOMM’22], Cilium
 Attached to in-kernel eBPF hooks
* No additional the userspace-kernel boundary crossing

Shared memory processing
is considered not safe

* No additional container networking overhead
Shared memory processing
is limited to a single node
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Library-based SURE Sidecar

Based on the LibOS design of unikernels

* Deploy the sidecar as a library linked into the function code within the
unikernel

* The sidecar contains a sequence of handlers that perform certain sidecar
functionalities

Unikernel’s address space
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* The unikernel’s single-address-space simplifies data exchange between sidecar
and user code

. . function app() < - — "~ App. lig
* Invocation is made by procedure call Niowini

* overcome the shortcomings of an individual userspace sidecar.




Memory-level isolation in SURE
A Primer on MPK (Memory Protection Key)
* MPK is a hardware-level, intra-process memory isolation feature in Intel’s server CPUs (since 2019)

* PKRU (Protection Key Register User)

* A per-core, 32-bit CPU register defines the access privilege of MPK, described by 2 bits
* “Access Disable” (AD) and “Write Disable” (WD)

* A total of 16 keys available within a SURE function
* Read/Write (0, 0), Read-Only (0, 1), or No-Access (I, X)
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Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Not feasible to tag each page with a distinct key * Shared memory buffers are managed by “PTE

* Memory related to Unikernel TCB components Update”
is managed by WRPKRU Coarse-grained but faster Fine-grained but slower
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Memory-level isolation in SURE

SURE uses two approaches to switch the access privilege of a memory page

* #1 WRPKRU (Write Data to PKRU) * #2 “PTE Update”
* x86 instruction to change the access privilege of the MPK * Update the 4 bits reserved for the MPK key ID in the PTE
by modifying PKRU * Then flush the corresponding TLB entry

* A SURE function may access more than 16 pages! * Allow for more scalable access management

* Shared memory buffers are managed by “PTE
* Memory related to Unikernel TCB components Update”

is managed by WRPKRU Coarse-grained but faster Fine-grained but slower

* Not feasible to tag each page with a distinct key
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Secure APIs based on SURE call gates

A “call gate” abstraction for user code to safely interact with protected pages

* Only call gate can update access privilege
* ViaWRPKRU or PTE Update
* Easier to work with binary inspection to prohibit illegal updates to access privilege

* Enhanced unikernel TCB (from Unikraft) in SURE
* Prevent unwanted update or access to PKRU register and PTEs of protected pages
* Avoid Privilege Escalation of MPK in a single address space
* Refer to the paper
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Microbenchmark Analysis

Cost of Memory Isolation with SURE
Baseline: a variant of SURE with MPK disabled
* MPK in SURE has limited penalty

* With a single connection: SURE shows 1.2-1.3% increased delay compared to the baseline.
* With increasing concurrent connection: SURE’s RPS decreases (e.g., | .8% reduction at 64 connections)

* Relatively small overhead for the reward of robust memory-level isolation

Single connection 64B messages
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15 Testbed: One sm110p node on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15



[1] https://github.com/GoogleCloudPlatform/microservices-demo

Realistic Workload Evaluation

Experiment setting

Online Boutique Microservice Chain [1]
* Intense web workload with 10 functions
e 6 different function chains

Serverless Alternatives

* Knative

* SPRIGHT [ 1
* NightCore [ 1

Two distinct deployment settings:

) Intra-node

Requests
Ad . Frontend Checkout Payment
Service Service Service Service
Recomm. Email
Service Service
Catalog Cart Shipping\ Currency
Service Service Service Service

Online Boutique Application(]

2) Inter-node: Orange and Green functions deployed on distinct nodes

16 Testbed: Three sm110p nodes on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15



https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2

17

Realistic Workload Evaluation

Requests per second & Tail latency
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 SURE is an order of magnitude better than any alternatives we evaluated
* Performance improvement attributed to the use of distributed zero-copy data plane
and lightweight library-based sidecar



Realistic Workload Evaluation
CPU efficiency
* Our metric - “CPU Cost Per RPS” (CCR)

Average CPU utilization
RPS
* Lower values of CCR suggest that each request requires
fewer CPU cycles

* A more efficient use of the CPU

* Defined as

* SURE is more efficient than NightCore and Knative
* No kernel networking; More lightweight sidecar; etc

* SURE is less efficient than SPRIGHT at a low concurrency
(= 16 for intra-node and < 4 for inter-node)

* Comes from polling cost

* SURE is more efficient than SPRIGHT under high
concurrency levels

* SPRIGHT uses kernel for inter-node traffic, CPU usage
grows substantially under high concurrency levels

* More concurrent processing amortizes the polling cost

18
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Conclusion

* SURE is a unikernel-based, lightweight serverless framework
* Unikernel-based runtime brings 4% faster startup VS. docker containers

* MPK-based call gates to enable fine-grained memory access management

* Mitigate the vulnerabilities of memory space sharing

* While retaining high performance and efficiency

* Offer zero-copy inter-function networking and lightweight library-based sidecars
* Yield up to 8% RPS improvement compared to SPRIGHT in a distributed environment

* While being more secure

* SURE is open-sourced
* w Find SURE at: https://github.com/ucr-serverless/sure
* If you have any questions or comments, please feel free to email us
(federico.parola@polito.it and shixiong.qi@uky.edu)
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https://github.com/ucr-serverless/sure
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